HİDROJEN EKONOMİSİ

MEVCUT HİDROJEN PAZARI
Hidrojen, sentetik bir enerji taşıyıcısıdır. Üretim kaynakları son derece bol ve çeşitlidir. Bunların en başta gelenleri su, kömür ve doğalgazdır. Hidrojen, bilinen tüm yakıtlar içerisinde birim ağırlık başına en yüksek enerji içeriğine sahip (120,000 kJ/kg) olandır. Sıvı haline dönüştürüldüğünde gaz halindeki hacminin sadece 1/700’ünü kaplar. Saf oksijenle yandığında sadece su ve ısı açığa çıkarır. Hava ile yandığında ise azot oksitler açığa çıksa da diğer yakıtlara göre kirliliği son derece azdır. Dünyada üretilen hidrojenin çok büyük bir bölümü, metanın su buharı ile katalitik olarak oksidasyonu yöntemi ile doğal gazdan elde edilmektedir. Doğalgazın yanı sıra diğer hidrokarbon yakıtlardan da (metanol, LPG, nafta, benzin) su buharı ile katalitik olarak hidrojen üretilebilmektedir. Hidrojen, alternatif olarak saf oksijen veya hava ile kısmi oksidasyon, piroliz ve ototermal reforming (kısmi oksidasyon ve su buharı oksidasyonu bir arada) reaksiyonları ile de üretilebilmektedir. Hidrojenin kullanımının iki temel nedeni vardır. Tüm tüketimin yaklaşık yarısı haber prosesi yardımı ile amonyum (NH3) üretmek için yapılır. Dünya nüfusu artıkça, onu desteklemek için artmak zorunda olan tarım, amonyuma duyulan talebi sürekli büyütmektedir. Hidrojen tüketiminin diğer yarısı ise ağır petrol kaynaklarını yakıt olarak kullanılabilecek daha hafif türevlere dönüştürmek için gerçekleştirilir. Artan petrol fiyatları, petrol şirketlerini katran gibi fakir maddelerden yakıt elde etmek için daha da cesaretlendirerek, hidrojen tüketiminde ilk uygulamaya göre daha da yüksek bir büyümeye neden olmuştur.

Eğer hidrojen üretimi için ihtiyaç duyulan enerji, rüzgar, güneş ya da nükleer santrallerden kolay ve ekonomik bir şekilde elde edilebilseydi, hidrojenin hidrokarbon yakıt elde etmek üzere kullanılması, toplam hidrojen tüketimini örneğin ABD için 5 ila 10 kat kadar artırabilirdi. Bugün ABD’de bu amaçla hidrojen tüketimi yaklaşık yılda 4 milyon tondur. ABD için yıllık 37.7 milyon ton hidrojenin, petrolde dışa bağımlılığı kaldıracak miktarda, kömürden dönüştürülmüş sıvı yakıt elde etmek için yeterli olacağı sanılmaktadır. Ancak kömürün sıvı yakıta dönüştürülmesi dışa bağımlılığı azaltmakla birlikte sera gazı etkisi sorununa çözüm üretmemektedir. Günümüzde hidrojen üretiminin %48’i doğalgazdan, %30’u ham petrolden, %18’i kömürden ve %4’ü suyun elektroliz yolu ile ayrıştırılmasıyla üretilmektedir. Büyüyen pazar ve hızla artan fiyatlar hidrojenin daha ekonomik yöntemlerle üretilmesi konusunda ilgi yaratmıştır.
ÖNGÖRÜLEN MERKEZİ HİDROJEN KAYNAKLARI
Petrolün bugünkü ve gelecekte öngörülen durumu, ithalat bağımlılığı, fosil yakıtların yarattığı karbondioksit emisyonları ve Kyoto Sözleşmesi’nin emisyonlara getirdiği sınırlamalar hidrojenin hazır ve sınırsız bir alternatif olarak nitelendirilmesine neden oluyor.
Şu anki problem, fiyat ve altyapı maliyetleridir. Bu nedenle de petrole bağlı enerji sektörünün dönüşümünün sağlanmasında özel sektör kadar destekleyici hükümet politikaları da kilit rol oynayacaktır. Hidrojen ekonomisinde, hidrojen gazı üretmek için temel enerji kaynakları ile biyokütleler kullanılır. Petrol, kömür, doğalgaz gibi fosil yakıtların dışında kalan enerji kaynakları, fosil yakıtlara göre çok daha düşük sera gazı emisyonlarına sahiptirler. Yüksek verimlilikli hidrojen jeneratörlerinin ürettiği gazın, doğalgaz dağıtım şebekesine benzer bir sistemle dağıtılması beklenir. Ancak doğalgaza göre aşılması gereken zorluklar vardır. Hidrojenin contalardan daha kolay sızabilmesi ya da dağıtım borularında çatlaklara neden olması bunlardan birkaçıdır. Hali hazırda geniş doğalgaz dağıtım şebekesi üzerinde kurulu kojenerasyon tesislerinin, sağladıkları elektrik dönüşümü, sisteme benzerlik gösterir.

Tam bir hidrojen ekonomisinde, rüzgar ya da hidroelektrik tesislerinin ürettiği enerjinin tamamı elektrik şebekesine verilmez. Bir kısmıyla hidrojen üretilir. Nükleer enerji tesislerinin bir çıktısı olan ısı enerjisi, elektroliz sıcaklığını artırmak şeklinde verimliliğe katkı da bulunacaktır.
ÜRETİM
Dünyadaki hidrojenin büyük bir kısmı denizlerde hapsolmuş durumdadır. Hidrojen, doğalgazın buhar ile yeniden yapılandırılması ya da kısmi oksidasyonu gibi yöntemlerle fosil yakıtlardan da üretilebilir. Wang’ın 2002’de ve Kreith’in 2004’te yaptığı çalışmalar, üretim ve dağıtım sırasında açığa çıkan emisyonlar göz önüne alınsa dahi, hidrojenin neden olduğu CO2 çıktısının, içten yanmalı motorların neden olduğu CO2’den çok daha az olacağını göstermiştir. Yakıt hidrojenin temelde, sudan yenilenebilir enerjilerle üretilmesi ana ilkedir. Hidrojen üretim yöntemlerinin başında suyun direkt elektrolizi gelir. Elektroliz için elektrik gereksinimi fosil yakıtlardan, hidroelektrik kaynaktan, nükleer güçten, jeotermal enerjiden, güneş, rüzgar ve deniz dalga enerjilerinden elde edilebilir. Gelecek için üzerinde en çok durulan yöntem fotovoltaik güneş üreteçlerinin kullanılmasıdır. Hidrojen suyun ısıl parçalanması (termal krakingi) ile de üretilebilmektedir. Bir diğer hidrojen üretim yöntemi doğalgazın ve gaz hidrokarbonların buhar reformasyonudur. Hidrojen üretimi için ayrıca kömür gazifikasyon yöntemi vardır.
Gazifikasyon işlemi kükürdün kolaylıkla elimine edilmesine olanak tanıdığından çekici bulunmaktadır. Ortalama olarak 6 kg kömürden 3.785 lt benzine eşdeğer 1 kg hidrojen elde olunur. Kömür, dünyanın en zengin fosil yakıtıdır. Bilinen kömür yataklarına biçilen güvenilir ömür 200 yıl kadarsa da, bunun 400 yıla uzanabileceği söylenmektedir. Katı atıklar ve kanalizasyon materyalleri de hidrojen üretimi için hammadde olup, gazifikasyon işlemine bağlı olarak sentez gazının hava veya oksijenle reformasyonu hidrojen vermektedir. Termokimyasal çevrimlerle sudan, fotokimyasal işlemle organometalik bileşikler veya enzim su karışımından hidrojen üretilebilir

Hidrojen üretimi sırasında tüketilen enerji miktarı hakkında bazı endişeler vardır. Hidrojen üretimi, hidrojen barındıran su ya da fosil yakıt gibi kaynaklara ihtiyaç duyar. Fosil yakıtların kullanılması doğal kaynakların tükenmesine ve buna karşın CO2 üretilmesine neden olurken, suyun elektroliz edilmesi için ihtiyaç duyulan enerjinin önemli bir kısmı, yine fosil yakıtların elektrik enerjisine dönüştürülmesi yöntemiyle sağlanmaktadır. Bu açıdan, hidrojen yakıtının, bugün için fosil yakıtlardan tamamen bağımsız ya da hiçbir emisyona neden olmayan bir yöntem olduğunu iddia etmek oldukça güçtür.

Eğer elektrik enerjisi üretimi, kimyasal yöntemlere dayanıyor ise, hidrojeni üretmek için de doğrudan kimyasal yöntemlere başvurulması daha uygundur. Fakat elektrik enerjisi üretimi, hidroelektrik ya da rüzgar jeneratörleri gibi mekanik yöntemlere dayanıyor ise, hidrojenin suyun elektroliz edilmesi yöntemi ile üretilmesi uygun olabilir. Çoğunlukla tüketilen elektriğin maliyeti, üretilen hidrojenin fiyatından daha yüksek olduğu için, elektroliz yöntemi hidrojen üretiminde çok küçük bir paya sahiptir.

Eğer elektrik enerjisi üretimi, ısı (nükleer ya da güneş) enerjisi yöntemine dayanıyor ise, hidrojen üretmek için en uygun yöntem yüksek sıcaklıklı elektrolizdir. Düşük sıcaklıklı elektrolizden farklı olarak suyun yüksek sıcaklıklı elektrolizi (YSE) başlangıçtaki ısı enerjisinin önemli bir kısmını kimyasal enerjiye (hidrojen) dönüştürme kabiliyetine sahiptir. Potansiyel olarak prosesin enerji verimi %50 daha fazladır. İhtiyaç duyulan enerjinin bir kısmı ısı ile sağlandığı için kimyasal dönüşüme konu elektrik enerjisi daha az tüketilir. YSE’nin laboratuvar uygulamaları yapılmış olmasına karşın henüz endüstriyel bir uygulaması yoktur.

DEPOLAMA VE TAŞIMA
Üretilen hidrojen depolanabilmekte, boru hatları ve/veya tankerlerle taşınabilmektedir. Doğalgaz boru hatlarının gelecekte hidrojen taşınması için kullanılabileceği belirtilmektedir. Hidrojenin depolama yöntemleri; tüplenmiş alçak basınçlı gaz (12 bar) ve yüksek basınçlı gaz (150 bar) dışında sıvılaştırılmış biçimde, kriyojenik (dondurulmuş) tanklarda (220 kPa) ve metalik hidrid biçiminde olabilmektedir. Hidrojen gaz biçiminde boru hatlarıyla taşınabildiği gibi, yüksek basınçlı gaz ve sıvılaştırılmış biçimde tankerlerle taşınabilmektedir. Gaz hidrojenin zeolit ortamlarda depolanması çalışmaları vardır. Ancak, enerji içeriğinin yüksekliği açısından gaz yerine sıvı hidrojen depolama teknikleri üzerinde durulmaktadır.

Hidrojenin hidridlerle depolanması ve taşınması da önemle ele alınmaktadır. Geliştirilen hidridler; titanyum alaşımları (özellikle demir-titanyum), palladyum alaşımları, zirkonyum alaşımları, titanyum-zirkonyum-vanadyum-nikel alaşımları, titanyum-zirkonyum-vanadyum-demir-krom-mangan alaşımları, mağnezyum-nikel alaşımları vs. gibi materyallerle oluşturulmaktadır. Düşük sıcaklık ve yüksek sıcaklık hidridleri vardır. Demir-titanyum alaşımı düşük sıcaklık hidridi iken, mağnezyum-nikel alaşımı yüksek sıcaklık hidrididir. Düşük ve yüksek sıcaklık hidridlerinin kombinasyonu da kullanılmaktadır. Metal hidridler paket olarak taşınmaya uygundur.

MALİYET
Yakıtların ekonomik kıyaslaması efektif maliyete göre yapılır. Efektif maliyet ise çıplak maliyet ve çevre zararlarını içeren maliyet ile kullanım veriminin fonksiyonudur. İç maliyet de denilen çıplak maliyet, alışılagelmiş görünür maliyettir. Çevre zararlarını içeren dış maliyet ise yeni bir kavramdır. Burada yakıtın birim miktarının çevrede oluşturduğu maddi zarar anlaşılmaktadır. Efektif maliyete göre hesaplanan ekonomiklik faktörü hidrojende 1 iken doğalgaz dışındaki fosil yakıtlarda 0.37-0.61 arasında değişmekte olup, hidrojenden daha az ekonomiktirler. Ancak, doğalgazın ekonomiklik faktörü bugün için hidrojenden yüksektir. Temelde efektif maliyet önemli olmakla birlikte, günümüzde maliyet karşılaştırmaları, daha çok iç ya da çıplak maliyetle yapılmaktadır.
Bu nedenle, yalnız iç maliyet açısından bakıldığında, en ucuz hidrojen üretimi kömürden sağlanmakta, onu hidro-hidrojen izlemektedir. En düşük hidrojen maliyeti, ulaştırma sektörü için benzinden ucuz olabilmektedir. Dış maliyet, yani çevre maliyeti göz önüne alınmaksızın hidrojen endüstri, konut ve elektrik sektörlerinde doğalgazdan 1.5-3.7, petrol ürünlerinden 1.3-3.5 ve kömürden 4.7-5.8 kat daha pahalı görünmektedir. Ancak, yakıt hidrojenin kütlesel üretimi yapılmadığından bu karşılaştırmalar göreceli kalmaktadır.

DİĞER KİMYASAL YAKITLAR
Bitkilerden elde edilen, etanol, biyodizel gibi biyoyakıtların kullanımı ekonomideki küçük değişikliklerle gerçekleştirilebilir. Bunla birlikte, kayda değer miktarda petrol tüketiminin yerini alabilmesi için çok geniş tarım alanlarına ihtiyaç duyulduğundan, bütün ülkeler için uygun bir çözüm olmayabilir. Hidrojen ekonomisinde hidrojen, tamamıyla elektrikli olmayan araçlarda kullanılmak üzere, yenilenebilir bir enerji kaynağı olarak elde edilir. Hidrojene diğer bir teorik alternatif ise hidrojen ve karbondioksitin birlikte kullanılarak, etanol ya da metanol gibi sıvı bir yakıta dönüştürülmesidir. Hidrojeni, üretildiği tesisten taşımak yerine, aynı tesiste diğer sıvı yakıtlara dönüştürerek, mevcut dağıtım ağında taşınması ve kullanılması sağlanabilir. Böylece hidrojen gazının taşınması ve depolanması ile ilgili zorluklar aşılırken, karbondioksit gazının tüketilmesi ile ilgili endüstriyel bir alternatif yaratarak, sera gazlarının azaltılması ile ilgili önemli bir adım atılabilir. Yakıtın zehirliliği, yanma ürünlerinin zehirliliği, diffüzyon katsayısı, ateşleme enerjisi, patlama enerjisi, alev emissivitesi gibi faktörlere göre yapılan emniyet değerlendirmesi açısından, hidrojen en emniyetli yakıttır. Hidrojenin emniyet faktörü 1 iken, benzinde 0.53 ve metanda 0.80 olmaktadır. Kısacası benzin ve doğalgaz hidrojene göre tehlikeli yakıtlardır. Hidrojenin benzin ve metana göre yanma tehlikesi daha azdır.

Yakıtlar için önemli olan bir özellik de çevresel uygunluktur. Fosil yakıt kullanımının hava kalitesi, insanlar, hayvanlar, plantasyonlar ve ormanlar, akuatik ekosistemler, insan yapısı yapılar, açık madencilik, iklim değişikliği, deniz seviyesi yükselmesi üzerindeki olumsuz etkilerinden kaynaklanan çevre zararları dünya genelinde, 1990 verileriyle; kömür için 9.8 ABD $/GJ, petrol için 8.5 ABD $/GJ ve doğalgaz için 5.6 ABD$/GJ olarak saptanmıştır. Çevresel zarar ve çevresel uygunluk faktörü için fosil yakıt sistemi, kömür/sentetik yakıt sistemi ve güneş-hidrojen sistemi (güneş PV panellerinden sağlanacak enerji ile hidrojen üretim sistemi), bu verilerin ışığında karşılaştırılmıştır.
Güneş-hidrojen üretim sisteminde çevresel zarar 0.46 ABD $/GJ gibi yok denecek düzeye düşmekte ve çevresel uygunluk faktörü üst sınıra çıkarak 1 olmaktadır.

KULLANIMINDAKİ TEHLİKELER
Hidrojen, basında nispeten tehlikeli bir gaz olarak tanıtılmıştır ve gerçekte de hidrojen hava karşımı diğer gazlardan daha patlayıcı/yanıcı özelliğe sahiptir. Hidrojen gazı depolandığı tanktan sızabilir ve bir çatlak olması durumunda çok hızlı boşalır. Hidrojen alevi zor görülür ve hidrojen yangınıyla mücadele etmek de oldukça zordur. En çok bilinen hidrojen yangını LZ 129 Hindenburg felaketidir. Yolcuların 2/3’ü ile mürettebat kurtulmuş, ölenlerin büyük çoğunluğu atlayanlar olmuştur.

ÖRNEKLER VE PİLOT UYGULAMALAR
Hidrojenin taşımacılık amacıyla dağıtımı İzlanda, Almanya, Kaliforniya, Japonya ve Kanada’da test edilmektedir. Yakıt pilli elektrik santralleri yüksek enerji verimlerinin yanı sıra, çok az yer kaplamaktadırlar. Örneğin 2 MW’lık yakıt pilli santralin kapsadığı alan 20 m²’den az olmaktadır. Büyük yer kapsayan konvansiyonel santrallerin yerleşim birimlerinden belli uzaklıkta kurulması ve elektrik iletimi sorunu, geleceğin yakıt pilli elektrik santralleri ile çözüme kavuşacak görünmektedir. Gelecekte tüketicilerin bulundukları yerin yakınına kurulacak yakıt pilli santrallerle iletim ve dağıtım kayıpları olmaksızın gereksinimler karşılanabilecektir. Hidrojenin alevsiz yanması için katalitik yakma düzenleri geliştirilmiştir. Hidrojenin katalitik yanması mutfak ocaklarına, fırınlara, su ısıtıcılara ve özel sobalara uygulanmıştır. Yine gösterim amacıyla bu tür beyaz eşya üreten firmalar vardır. Böylece, konutlarda yakıt olarak hidrojen kullanımının önü açılmış bulunmaktadır.

Hidrojenin boru hatları ile evlere kadar ulaştırılması olanaklı olup, bu konuda projeler geliştirilmekte ve doğalgaz hatlarından yararlanılması tasarlanmaktadır. Hidrojen enerjisi alanında çeşitli ülkelerin işbirliği sonucu uluslararası programlar başlatılmıştır. Avrupa Topluluğu ile Kanada’nın EURO-QUEBEC (hidro-hidrojen) projesi, Norveç ve Almanya’nın NHEG projesi, Almanya ve Suudi Arabistan’ın HY-SOLAR (güneş-hidrojen) projesi, İskandinav ülkeleri ile Yunanistan’ın işbirliği, Uluslararası Enerji Ajansı (IEA) hidrojen enerjisi projeleri, Birleşmiş Milletler UNIDO-ICHET hidrojen çalışmaları bunlara örnek gösterilebilir.